New Bounds for Hahn and Krawtchouk Polynomials
نویسنده
چکیده
For the Hahn and Krawtchouk polynomials orthogonal on the set {0, . . . , N} new identities for the sum of squares are derived which generalize the trigonometric identity for the Chebyshev polynomials of the first and second kind. These results are applied in order to obtain conditions (on the degree of the polynomials) such that the polynomials are bounded (on the interval [0, N ]) by their values at the points 0 and N . As special cases we obtain a discrete analogue of the trigonometric identity and bounds for the discrete Chebyshev polynomials of the first and second kind.
منابع مشابه
On Integral Zeros of Krawtchouk Polynomials
We derive new conditions for nonexistence of integral zeros of binary Krawtchouk polynomials. Upper bounds for the number of integral roots of Krawtchouk polynomials are presented.
متن کاملImage analysis by discrete orthogonal dual Hahn moments
In this paper, we introduce a set of discrete orthogonal functions known as dual Hahn polynomials. The Tchebichef and Krawtchouk polynomials are special cases of dual Hahn polynomials. The dual Hahn polynomials are scaled to ensure the numerical stability, thus creating a set of weighted orthonormal dual Hahn polynomials. They are allowed to define a new type of discrete orthogonal moments. The...
متن کاملExtensions of discrete classical orthogonal polynomials beyond the orthogonality
It is well known that the family of Hahn polynomials {hα,β n (x;N)}n≥0 is orthogonal with respect to a certain weight function up to N . In this paper we present a factorization for Hahn polynomials for a degree higher than N and we prove that these polynomials can be characterized by a ∆-Sobolev orthogonality. We also present an analogous result for dual-Hahn, Krawtchouk, and Racah polynomials...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملImage Analysis by Discrete Orthogonal Hahn Moments
Orthogonal moments are recognized as useful tools for object representation and image analysis. It has been shown that the recently developed discrete orthogonal moments have better performance than the conventional continuous orthogonal moments. In this paper, a new set of discrete orthogonal polynomials, namely Hahn polynomials, are introduced. The related Hahn moment functions defined on thi...
متن کامل